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ABSTRACT
It often occurs that no model may be exactly right, and that different portions
of the data may favour different models. The purpose of this paper is to propose
a new procedure for the detection of regime switches between stationary and
nonstationary processes in economic time series and to show its usefulness in
economic forecasting. In the proposed procedure, time series observations are
divided into several segments, and a stationary or nonstationary autoregressive
model is fitted to each segment. The goodness of fit of the global model com-
posed of these local models is evaluated using the corresponding information
criterion, and the division which minimizes the information criterion defines
the best model. Simulation and forecasting results show the efficacy and limi-
tations of the proposed procedure. Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

It is well known that economic systems exhibit occasional jumps from one regime to another. 
A nation’s economy periodically switches from expansion to contraction and back again, and the
dynamics differ between these two regimes. This feature is known as the asymmetry of business
cycles, as advocated by Nefti (1984). A financial market periodically switches from a low-volatility
regime to a high-volatility regime and back again. For example, this feature of volatility was 
modelled as a pure Markov-switching variance model by Turner et al. (1989). Thus the Markov
switching model has been widely applied in time series econometrics literature, particularly since
the seminal work of Hamilton (1989).

These regime switches may occur between stationary and nonstationary processes as well. For
example, Ang and Bekaert (2002) pointed out that the US Federal Reserve tends to move short-term
interest rates in a very persistent fashion during low-inflation periods. However, during high-
inflation times, interest rate changes made by the US Federal Reserve become less persistent and
have higher variance. This time series property makes it difficult to detect a unit root using the con-
ventional hypothesis testing procedures. Nelson et al. (2001) investigated the poor performance of
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the Dickey–Fuller (1979, henceforth DF) type tests when the data undergo Markov regime 
switching.

In practice, there are many types of processes that have near unit roots, which are very difficult to
distinguish from perfect unit root processes, given a finite sample. To examine these processes, two
alternative approaches have been proposed. First, McCulloch and Tsay (1994) treated stationarity and
nonstationarity as two competing models and allowed each observation to switch from one model to
the other, with the transition being governed by a Markov process. For the monthly series of the indus-
trial production index for the USA from 1947:1 to 1992:1, they concluded that there might be a struc-
tural change around 1971:12 and that the series switched from a nonstationary process to a stationary
process. Second, Granger and Swanson (1997) introduced a class of stochastic unit root processes
which have a root that is not constant, but is stochastic, and varies around unity. They compared fore-
casting performances of random walk with drift models, autoregressive models, time-varying para-
meter models and stochastic unit root models. Using monthly US macroeconomic time series, they
concluded that stochastic unit root models are potentially useful in multi-step-ahead forecasting.

The purpose of this paper is to present a new procedure for the detection of regime switches
between stationary and nonstationary processes and to show the usefulness of this procedure in fore-
casting economic time series. My procedure is an extended version of Kitagawa and Akaike (1978,
hereafter referred to as KA). KA have proposed a procedure for fitting a locally stationary autore-
gressive model to a nonstationary time series using the Akaike information criterion (Akaike, 1974),
AIC. In their procedure, time series observations are divided into several segments, and a station-
ary autoregressive model is fitted to each segment. The goodness of fit of the global model com-
posed of these local stationary models is evaluated using the corresponding AIC, and the division
which minimizes the AIC defines the best model. In the proposed procedure, however, not only a
stationary model but also a nonstationary model for each segment is considered. For example, there-
fore, I examine the process which is derived by a stationary model in the first half and by a non-
stationary model in the second half. In addition, not only the AIC but also the BIC, the Bayesian
information criterion (Schwarz 1978), is introduced and compared.

Some comments on my definitions of a structural change and a regime switch used in this paper
are appropriate here. It is natural to consider that the concept of structural change includes that of
the regime switch. I therefore define a regime switch as only the case where a structural change
occurs and the time series process changes from a stationary process to a nonstationary process, or
vice versa. In addition, I use the terms ‘structural break’ and ‘structural change’ identically as the
case may be.

The rest of the paper is organized as follows. In the next section, my procedure for the detection
of regime switches between stationary and nonstationary processes is presented. In the third section,
I examine the efficacy of my procedure using Monte Carlo simulations. In the fourth section, I apply
the proposed procedure to 10 quarterly time series of industrial production indices of developed
countries. In the fifth section, forecasting performances are compared using random walk with drift
models and autoregressive models with unit root pretests allowing structural changes. Conclusions
are presented in the last section.

MODEL SELECTION-BASED REGIME SWITCH DETECTION

In this section I describe a new procedure for the detection of regime switches between 
stationary and nonstationary processes, which is an extended version of KA. First, the KA proce-
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dure is reviewed briefly, and then how an extension is made to model such regime switches is 
discussed.

The KA procedure
KA considered the following autoregressive model with m structural changes (m + 1 regimes) for
the observed time series yt (t = 1, . . . , T ):

(1)

where eit is the disturbance term generated from i.i.d. N(0, s i
2), T0 = 0 and Tm+1 = T. All roots of 1

- fi1L - . . . - fiPi
LPi = 0 (i = 1, . . . , m + 1) lie outside the unit circle. The indices (T1, . . . , Tm), or

the breakpoints, are explicitly treated as unknown. The purpose is to estimate the unknown autore-
gressive coefficients together with the breakpoints when T observations on yt are available. The good-
ness of fit of the global model composed of these local stationary models is evaluated using the
corresponding AIC, and the division which minimizes the AIC defines the best model. KA’s AIC is
defined as:

(2)

where i
2 is the maximum likelihood estimate for si

2, and these residual variances are counted as
parameters. In their minimum AIC procedure for the fitting of a locally stationary autoregressive
model, the length of the basic span of data, K, is introduced. Therefore, the following conditions are
imposed:

(3)

where n is a positive integer. In addition, the maximum order of each autoregressive model, pmax,
must be set. As a numerical example, KA set K = 100 and pmax = 5 for locally stationary processes
with three regimes of T = 900.

The proposed procedure
I consider an extended version of the KA procedure with respect to the following three points. First,
the regime switches between stationary and nonstationary processes are introduced in place of (1).
Stationary and nonstationary processes are respectively described as

(4)

In the KA procedure, the stationary process around a time trend is not considered. In economic time
series, however, this process seems to be more natural than a stationary process without a trend. The
two-step procedure for a stationary process such as in (4) is advocated by Bhargava (1986), Perron
(1989) and Schmidt and Phillips (1992).

Second, in place of a basic span, the minimum length of each segment, L, is introduced. Since
the sample size of economic time series is generally limited, the notion of a basic span is not appli-
cable. In place of KA’s conditions (3), therefore, the following conditions are imposed:
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Third, breakpoints T1, . . . , Tm should be treated as parameters to be estimated in the same way 
as in Yao (1988). In place of KA’s definition (2), therefore, the following modified AIC (MAIC) 
is considered here:

where qi = 3 + pi if stationary and qi = 2 + pi if nonstationary.
In addition, the corresponding BIC is defined similarly as follows:

In the proposed procedure, all possible models are considered, and the best MAIC or MBIC model
is selected among them. For example, in the case of T = 100, m = 2 and L = 30, 528 (= 2 ¥ 2 ¥ 2 ¥
66) models are examined. The proposed procedure, which I call the information criterion-based
model selection (ICBMS) procedure, is very computer-intensive. The development of a more effi-
cient solution is left for future research.

SIMULATIONS

I examine the efficacy of my procedure via Monte Carlo simulations, and compare the results with
those of the DF-type procedure. This section proceeds as follows. First, the data-generating processes
(DGPs) considered in simulations are specified. Beginning with simple stationary and nonstationary
processes, I consider several types of regime-switching processes. Second, the DF-type procedures
are reviewed briefly, since it is reasonable to examine how this procedure performs in the case of
regime switches, similarly to Nelson et al. (2001). Finally, I compare simulation results using my
procedure with those using the DF-type procedure.

Data-generating processes
The following 13 DGPs are considered:
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DGP 5 (SN):

DGP 6 (NN):

DGP 7 (NN):

DGP 8 (SSS):

DGP 9 (SSS):

DGP 10 (SNS):

DGP 11 (NSN):

DGP 12 (NNN):

DGP 13 (NNN):

In each DGP above, the letter within the parentheses denotes ‘stationary’ or ‘nonstationary’. For
example, ‘NSN’ within the parentheses of DGP 11 indicates that this series has three regimes, or

y y y et t t t3 3 1 3 21 5 1 2 0 2= + - +- -. . .
y y y et t t t2 2 1 2 21 0 1 5 0 5= + - +- -. . .

where y y y et t t t1 1 1 1 20 5 1 8 0 8= + - +- -. . .

y y y y t Tt t T T BB B= + - >3 2 3 22 2   if 
y y t T y y y y T t Tt t B t t T T B BB B= £ = + - < £1 1 2 1 2 1 21 1  if if ,
y y y e t Tt t t t B= - + >- -1 6 0 61 2 2. . if 

y y y e T t Tt t t t B B= + - + < £- -0 5 1 6 0 61 2 1 2. . . if 

y y y e t Tt t t t B= + - + £- -1 0 1 6 0 61 2 1. . .   if 

y y et t t3 3 11 0 1 0= + +-. .
y t y y et t t t2 2 1 2 20 4 1 4 0 6= + - +- -. . .

where y y y et t t t1 1 1 1 20 5 1 6 0 6= + - +- -. . .

y y y y t Tt t T T BB B= + - >3 2 3 22 2 if 

y y t T y y y y T t Tt t B t t T T B BB B= £ = + - < £1 1 2 1 2 1 21 1  if if ,

y t y y et t t t3 3 1 3 20 4 0 6 0 6= + - +- -. . .
y y et t t2 2 10 5 1 0= + +-. .

where y t y y et t t t1 1 1 1 20 4 1 4 0 6= + - +- -. . .

y y y y t Tt t T T BB B= + - >3 2 3 22 2 if 

y y t T y y y y T t Tt t B t t T T B BB B= £ = + - < £1 1 2 1 2 1 21 1  if   if ,
y t y et t t3 3 21 2 0 6= - +-. .
y t y y et t t t2 2 1 2 20 8 0 6 0 6= + - +- -. . .

where  y t y y et t t t1 1 1 1 20 4 1 4 0 6= + - +- -. . .

y y y y t Tt t T T BB B= + - >3 2 3 22 2   if 

y y t T y y y y T t Tt t B t t T T B BB B= £ = + - < £1 1 2 1 2 1 21 1  if   if ,
y t t T t T y y e t Tt B B t t t B= - -( ) - -( ) + - + >- -0 4 0 2 0 2 1 4 0 61 2 1 2 2. . . . .   if 
y t t T y y e T t Tt B t t t B B= - -( ) + - + < £- -0 4 0 2 1 4 0 61 1 2 1 2. . . .   if 

y t y y e t Tt t t t B= + - + £- -0 4 1 4 0 61 2 1. . . if 

y y et t t2 2 10 5 1 0= + +-. .
where  y y y et t t t1 1 1 1 21 0 1 6 0 6= + - +- -. . .
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y y y e t Tt t t t B= + - + >- -0 5 1 6 0 61 2. . . if 
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two breaks, with nonstationary processes for the first and third regimes and a stationary process for
the second regime. The conventional DGPs when considering the unit root test allowing for struc-
tural change are 1, 2, 3 and 8. The DGPs 4, 6, 7, 9, 12 and 13 are beyond the scope of conventional
unit root and structural change literature. The DGPs 5, 10 and 11 are specified in order to examine
the properties of regime switches. In the above DGPs, et is generated from n.i.i.d.(0, 1), TB = T/2,
TB1 = T/3, TB2 = 2T/3. In each simulation, I set T = 120 and pmax = 4. The maximum number of regime
switches or structural changes, mmax, is fixed as mmax = 2. The number of replications is 300.

The Dickey–Fuller-type tests
The DF-type test employed here is the same as that proposed by Ohara (1999). Ohara developed an
extended version of the Zivot and Andrews (1992) (henceforth ZA) test. He considered the follow-
ing DF-type test regression allowing q trend breaks:

where 0 < l1 < . . . < lq < 1, DTt* (li) = t - TBi if t > TBi and DTt*(li) = 0 otherwise. TBi denotes the
ith breakpoint, and li denotes the break fraction such as li = TBi/T. The null hypothesis is

The alternative hypothesis is

Ohara’s technique is the same as that of ZA, and therefore he obtains the minimum of the sequence
of unit root test statistics, by sequentially incrementing the break fractions. He derived the asymp-
totic distributions for this minimum under the preceding null hypothesis and tabulated the critical
values. Ohara’s test includes DF and ZA tests as special cases of q = 0 and q = 1, respectively.

Some comments on lag length selection and on trimming are appropriate here. The number of
extra regressors, k, is determined using the same selection procedure as that used by Perron (1989);
that is, working backward from k = kmax, I chose the first value of k such that the t-statistic on k

was greater than 1.6 in absolute value and the t-statistic on l for l > k was less than 1.6 in absolute
value. I set kmax = 4.

In monitoring multiple structural changes, I cannot consider change points too close to the begin-
ning or end of the sample or to other change points. Let d denote the trimming value. The location
of structural changes is restricted as

where I set d = 5 as in Ohara.

Comparisons between the DFZAO and ICBMS procedures
In the DF-type procedure, the following steps are taken. First, the DF test is carried out. If the null
hypothesis can be rejected at the 5% level, then the stationary process with no break (hereafter
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referred to as SB0) is selected. If the null hypothesis cannot be rejected, the ZA test is next imple-
mented. If the null hypothesis can be rejected, then the stationary process with one break (SB1) is
selected. Otherwise, Ohara’s test is finally employed. If the null hypothesis can be rejected, then the
stationary process with two breaks (SB2) is selected. Otherwise, the nonstationary process with no
break (NB0) is selected. Hereafter, I call this selection procedure the DFZAO procedure.

In the ICBMS procedure, on the other hand, all possible models are considered and estimated,
and related IC values are stored. Next, the best IC model is selected among alternative models. It
should be noted that the NB1 or NB2 process can be selected by the ICBMS procedure but not by
the DFZAO procedure by definition.

In the ICBMS procedure, the minimum length of each segment is fixed as L = 26. There is no
strictly economic or statistical reason for this setting. In the subsequent studies, I apply this proce-
dure to quarterly economic time series. The average of the period of one business cycle in postwar
USA is 22 quarters, and I believe that the minimum data length for estimating an autoregressive
model needs more than the period of one business cycle. Finally, given the maximum number of
structural changes, such as mmax = 2, the maximum order of each autoregressive model, such as 
pmax = 4, and the minimum data length, such as L = 26, the best AIC and BIC models are selected
among all possible models.

Simulation results
Table I shows the frequency counts of selected processes. First, the results of the DFZAO procedure
are examined. For DGPs 1, 3 and 8, expected results are obtained. For DGP 2, however, in the ter-
minology of hypothesis testing, size distortions occur, as expected by Ohara. The true model (in this
case, NB0) is selected only at 65%. Ohara reported, for example, that the 5% critical value obtained
using the asymptotic distribution is -5.35, but that determined using the finite sample distribution
(T = 150) is -5.89. For other DGPs, the results are more mixed, as expected on the basis of the con-
dition that these DGPs are not considered in the DFZAO procedure. For DGP 5, for example, where
the regime switch from a stationary process to a nonstationary process occurs, frequency counts are
separated into three processes, except for SB0. In another case of DGP 7, SB1 is incorrectly selected
at 73%. The AIC-based model selection (henceforth, AICBMS) procedure performs poorly. The
results suggest a consistent bias towards the selection of stationary processes with more structural
changes or regime switches.

On the other hand, the BIC-based model selection (henceforth, BICBMS) procedure performs
better than the AICBMS procedure, but shows a consistent bias towards the selection of a non-
stationary process with less structural changes or regime switches. As a typical case, no true model
(SSS) is selected for DGP 8, whereas the true model is selected at 73% using the AICBMS proce-
dure. This is because, in the true DGP, the parameters for three autoregressive processes are the
same, whereas they are assumed to be different in the BICBMS procedure. Thus, more parsimonious
models ‘N’ and ‘NN’ are selected at 32% and 42%, respectively. As discussed by Hansen (2001),
the need for two structural breaks also reduces the distinction between the trend break and random
walk models. Another reason why a nonstationary autoregressive model is preferred to a stationary
model in BIC is that the former is more parsimonious than the latter. As a simple example, consider
a persistent time series such as unemployment rate or interest rate. It often occurs that a random
walk model shows as good a performance as a stationary AR(1) model. In this case, the former is
more parsimonious, by one parameter, than the latter.
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Table I. Frequency counts of selected processes

(A) Dickey–Fuller, Zivot–Andrews and Ohara using the 5% significance
level

SB0 SB1 SB2 NB0

DGP 1 0.97 0.01 0.01 0.00
DGP 2 0.08 0.15 0.12 0.65
DGP 3 0.00 0.99 0.01 0.00
DGP 4 0.00 1.00 0.00 0.00
DGP 5 0.03 0.40 0.34 0.24
DGP 6 0.01 0.27 0.15 0.57
DGP 7 0.01 0.73 0.17 0.09
DGP 8 0.00 0.01 0.94 0.05
DGP 9 0.17 0.83 0.00 0.00
DGP 10 0.12 0.72 0.11 0.05
DGP 11 0.00 0.19 0.53 0.29
DGP 12 0.01 0.17 0.20 0.63
DGP 13 0.17 0.26 0.18 0.40

(B) AIC- and BIC-based model selections

S N SS NS SN NN SSS NSS SNS NNS SSN NSN SNN NNN

DGP 1 AIC 0.19 0.00 0.30 0.02 0.02 0.00 0.35 0.02 0.04 0.00 0.04 0.01 0.00 0.00
BIC 0.93 0.02 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGP 2 AIC 0.02 0.00 0.13 0.02 0.03 0.01 0.24 0.11 0.08 0.05 0.15 0.07 0.06 0.03
BIC 0.03 0.79 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

DGP 3 AIC 0.00 0.00 0.23 0.01 0.00 0.00 0.55 0.03 0.10 0.01 0.05 0.01 0.01 0.00
BIC 0.00 0.39 0.18 0.10 0.11 0.15 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.02

DGP 4 AIC 0.00 0.00 0.34 0.01 0.00 0.00 0.49 0.04 0.10 0.01 0.01 0.00 0.00 0.00
BIC 0.00 0.00 0.50 0.43 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00

DGP 5 AIC 0.00 0.00 0.11 0.00 0.02 0.00 0.37 0.02 0.12 0.02 0.21 0.02 0.11 0.00
BIC 0.00 0.51 0.01 0.01 0.21 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04

DGP 6 AIC 0.00 0.00 0.06 0.02 0.01 0.02 0.24 0.12 0.11 0.04 0.15 0.07 0.09 0.06
BIC 0.00 0.51 0.00 0.01 0.01 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06

DGP 7 AIC 0.00 0.00 0.09 0.03 0.01 0.01 0.23 0.14 0.13 0.08 0.13 0.07 0.04 0.03
BIC 0.00 0.00 0.00 0.01 0.03 0.77 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.16

DGP 8 AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.04 0.11 0.01 0.07 0.02 0.01 0.00
BIC 0.00 0.32 0.00 0.04 0.07 0.42 0.00 0.00 0.00 0.03 0.01 0.02 0.02 0.07

DGP 9 AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.06 0.03 0.00 0.00 0.01 0.00 0.00
BIC 0.00 0.00 0.10 0.34 0.01 0.03 0.12 0.23 0.02 0.08 0.01 0.03 0.01 0.01

DGP 10 AIC 0.00 0.00 0.01 0.00 0.00 0.00 0.70 0.06 0.19 0.03 0.01 0.00 0.00 0.00
BIC 0.00 0.00 0.03 0.09 0.01 0.08 0.00 0.01 0.16 0.49 0.00 0.01 0.04 0.08

DGP 11 AIC 0.00 0.00 0.03 0.01 0.01 0.00 0.39 0.21 0.06 0.01 0.16 0.10 0.02 0.01
BIC 0.00 0.10 0.00 0.02 0.04 0.61 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.18

DGP 12 AIC 0.00 0.00 0.04 0.01 0.01 0.00 0.23 0.13 0.11 0.06 0.15 0.12 0.08 0.05
BIC 0.00 0.27 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14

DGP 13 AIC 0.01 0.00 0.08 0.01 0.04 0.01 0.22 0.15 0.12 0.06 0.14 0.09 0.05 0.03
BIC 0.01 0.25 0.00 0.01 0.01 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10

Notes: The symbol ‘S’ indicates ‘stationary’, ‘N’ indicates ‘nonstationary’ and ‘B’ indicates ‘break’. For example, SB0 indi-
cates that this series is generated from a stationary process with no break. Similarly, NSN indicates that this series has three
regimes, or two breaks, with nonstationary processes for the first and third regimes and a stationary process for the second
regime. T = 120; 300 replications.
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APPLICATIONS

In this section, I apply the DFZAO and ICBMS procedures to 10 quarterly time series of industrial
production indices of developed countries: USA, Canada, Australia, Japan, Finland, France,
Germany, Ireland, Netherlands, UK. The data set is obtained from International Financial Statistics.
Each series is seasonally adjusted, and multiplied by 100 after log transformation for the period 1957
I–2002 III.

The following conditions are imposed: kmax = 12, as suggested by ZA and Ohara; mmax = 2 
and pmax = 6, on account of computational burden; and L = 28, as suggested in the preceding 
section.

Table II shows estimation results. The results of applying the DFZAO procedure suggest that five
series (USA, Canada, France, Germany, Netherlands) are stationary with one break, one series
(Japan) is stationary with two breaks, and four series (Australia, Finland, Ireland, UK) are nonsta-
tionary without a break. Using the AICBMS procedure, the three-regime model is selected for all
series, and four series are stationary for all regimes, as expected on the basis of simulation results
in the preceding section. In contrast, the BICBMS procedure has a tendency to select a nonstation-
ary process. The three-regime model with three nonstationary processes (NNN) is selected for five
series (USA, Germany, Ireland, Netherlands, UK). The two-regime model with two nonstationary
processes (NN) is selected for three series (Canada, Finland, France). The crucial difference in esti-
mation results between DFZAO and ICBMS procedures is on the breakpoints. However, I cannot
conclude which result is correct, since the true DGP is unknown.

COMPARISONS OF FORECASTING PERFORMANCES

One clear way to judge the relevance of a model is to ask how well it performs compared to other
models in out-of-sample forecasting using actual data. In this section, the forecasting performances
of ICBMS procedures are compared to other forecasting procedures using the 10 quarterly time series
analysed above. The models considered here are random walk with drift (henceforth RWD) models,
and autoregressive models with unit root pretests allowing structural changes. Stock and Watson
(1999) compared forecasting performances using 215 US monthly macroeconomic time series and
49 univariate forecasting methods, including autoregressions, exponential smoothing, artificial neural
networks and smooth transition autoregressions, and concluded that the best overall performance of
a single method is achieved using autoregression with unit root pretests.

In autoregressive models with unit root pretests allowing structural changes, the DFZAO proce-
dure is implemented. As a result of model selection using the DFZAO procedure, one forecasting
model is obtained for each series. For example, if a stationary model without a break is selected
using the DF test, forecasting using this model is employed. If a stationary model with two breaks
is not selected using Ohara’s test, forecasting using a nonstationary model is implemented. The con-
ditions imposed are the same as in the preceding section.

The reason for not considering nonlinear models is as follows. Engle (1994) considered a Markov
switching model and found that it does not forecast exchange rates better than a random walk. Similar
results were obtained in forecasting the US unemployment rates (Montgomery et al., 1998). In addi-
tion, the McCulloch and Tsay (1994) method is not applicable to forecasting, because their model
allows each observation to switch from one model to the other. Their method is suitable not for 
forecasting but for outlier detection. Finally, stochastic unit root models developed by Granger and
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Swanson (1997) do not perform as well as random walk with drift models in forecasting monthly
US macroeconomic time series at one- and five-step-ahead.

All forecasts simulate real-time implementation, that is, they are fully recursive (e.g., Montgomery
et al., 1998; Stock and Watson, 1999). For example, the case of a four-step-ahead forecast is con-
sidered as follows. First, the estimation is carried out for the period 1957 I–1976 IV and the fore-
cast for 1977 IV is performed. Next, the estimation is carried out for the period 1957 I–1977 I and
the forecast for 1978 I is performed. The same implementation is continued 100 times in total. The
last estimation is therefore carried out for the period 1957 I–2001 III and the forecast for 2002 III
is performed.

Table III shows comparisons of forecast performances at one- to four-step-ahead. The mean square
forecast error (MSFE) and mean forecast error (MFE) are considered in order to evaluate forecast
performances. Except for RWD models for Japan, MFEs are relatively small. Since in Japan growth
rates after the oil price shock were less than half those before the shock, large negative bias (over-
prediction) occurs when using RWD models. Thus I focus my discussion on the MSFE for the other
nine series shown in the table. First, the DFZAO procedure performs worse than other procedures.
Second, the BICBMS procedure slightly outperforms other procedures. For six series (USA, 
Australia, Finland, Germany, Ireland, UK), forecasting performances of the BICBMS and RWD pro-
cedures are almost the same and better than those of the AICBMS procedure. The BICBMS proce-
dure outperforms the RWD procedure for two series (France, Netherlands), and the converse result
is obtained for one series (Canada).

CONCLUSIONS

In this paper I proposed a new procedure for the detection of regime switches between stationary
and nonstationary processes in economic time series. In the proposed procedure, time series obser-
vations are divided into several segments, and a stationary or nonstationary autoregressive model is
fitted to each segment. The goodness of fit of the global model composed of these local models is
measured by the corresponding information criterion, and the division which minimizes the infor-
mation criterion defines the best model. Simulation results show that the BIC-based model selection
procedure performs better than the AIC-based procedure, but shows a consistent bias towards the
selection of a nonstationary process with less structural changes or regime switches. Forecasting per-
formances were compared between alternative models such as random walk with drift models and
autoregressive models with unit root pretests allowing structural changes. The results showed that
the BIC-based procedure slightly outperforms other procedures.

In practice, it often occurs that neither model may be exactly right, and that the unknown struc-
ture of the data may change over time. Thus different portions of the data may favour different
models. Since a conventional unit root test employs only a global summary statistic, it is not appli-
cable to this situation. The proposed method, on the other hand, can monitor the evolution of the
model structure.

In examining a data set, a time series analyst usually asks which of several competing models
best fits all of the data. I relax this requirement here for the problem of choosing between a sta-
tionary model and a nonstationary model. A great advantage of my procedure, compared to other
procedures, is the consistent model evaluation. In the proposed procedure, for example, a partially
explosive autoregressive process and/or moving average error term can easily be introduced, and the
efficacy of these model changes can be consistently evaluated using the information criterion.
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Table III. Comparisons of forecast performances

Country Procedure Mean square forecast error Mean forecast error

One- Two- Three- Four- One- Two- Three- Four-
step- step- step- step- step- step- step- step-
ahead ahead ahead ahead ahead ahead ahead ahead

USA RWD 1.84 5.64 10.20 15.40 -0.17 -0.35 -0.55 -0.76
DFZAO 1.73 7.04 15.20 25.74 -0.01 -0.03 -0.03 -0.03
AICBMS 1.63 6.22 12.99 21.20 -0.24 -0.58 -0.96 -1.30
BICBMS 1.49 4.97 9.85 16.17 -0.12 -0.28 -0.46 -0.65

Canada RWD 3.61 10.02 18.74 29.23 -0.43 -0.84 -1.25 -1.64
DFZAO 3.89 12.39 25.27 45.11 -0.02 -0.04 -0.03 0.00
AICBMS 4.15 12.11 24.82 44.78 0.02 0.13 0.35 0.67
BICBMS 3.52 10.82 22.41 39.17 -0.12 -0.23 -0.26 -0.27

Australia RWD 2.84 6.10 9.51 12.77 -0.30 -0.61 -0.92 -1.24
DFZAO 4.06 10.71 19.64 29.49 0.18 0.42 0.65 0.82
AICBMS 3.33 7.76 12.72 17.69 0.01 0.08 0.15 0.20
BICBMS 2.93 6.50 10.26 14.21 0.21 0.40 0.59 0.77

Japan RWD 4.92 16.61 34.32 55.80 -1.41 -2.83 -4.21 -5.56
DFZAO 2.66 9.09 21.16 37.29 0.20 0.50 0.83 1.18
AICBMS 2.68 8.57 20.83 37.04 -0.18 -0.45 -0.78 -1.18
BICBMS 2.66 7.99 17.51 28.05 -0.29 -0.75 -1.22 -1.72

Finland RWD 4.18 10.39 16.76 24.73 -0.25 -0.51 -0.70 -0.88
DFZAO 6.31 16.36 25.83 39.22 0.11 0.25 0.45 0.64
AICBMS 4.73 11.72 19.18 28.47 0.15 0.33 0.54 0.73
BICBMS 4.18 10.30 16.94 25.86 0.06 0.09 0.21 0.32

France RWD 1.91 4.43 7.99 12.20 -0.53 -1.07 -1.60 -2.11
DFZAO 2.67 6.16 11.14 16.85 -0.06 -0.11 -0.16 -0.17
AICBMS 1.97 3.54 5.56 7.49 0.05 0.02 0.01 0.00
BICBMS 1.73 3.68 6.36 9.27 -0.13 -0.29 -0.42 -0.53

Germany RWD 2.97 6.75 11.65 17.76 -0.55 -1.09 -1.64 -2.17
DFZAO 3.30 7.62 12.74 19.81 -0.15 -0.30 -0.45 -0.61
AICBMS 3.40 7.57 12.72 19.95 -0.15 -0.30 -0.51 -0.74
BICBMS 3.26 7.16 10.88 16.31 -0.06 -0.17 -0.28 -0.40

Ireland RWD 8.22 17.96 26.07 34.62 0.26 0.64 0.98 1.23
DFZAO 9.76 22.30 36.31 50.05 0.26 0.64 1.07 1.48
AICBMS 9.61 21.08 30.71 41.43 0.21 0.46 0.65 0.85
BICBMS 8.12 17.60 25.50 33.08 0.27 0.65 1.00 1.26

Netherlands RWD 4.23 7.29 10.88 15.64 -0.65 -1.31 -1.97 -2.63
DFZAO 4.52 7.86 11.97 16.45 0.29 0.53 0.75 1.03
AICBMS 4.20 6.17 7.90 10.44 -0.16 -0.27 -0.43 -0.54
BICBMS 4.06 6.21 7.95 11.33 0.06 -0.02 -0.08 -0.15

UK RWD 1.97 5.37 9.37 13.62 -0.24 -0.51 -0.78 -1.03
DFZAO 3.46 10.49 18.93 29.20 -0.45 -0.90 -1.30 -1.67
AICBMS 2.21 6.14 10.58 15.37 -0.20 -0.46 -0.73 -0.99
BICBMS 1.96 5.27 9.03 13.01 -0.12 -0.29 -0.45 -0.61

Notes: RWD denotes random walk with drift, DFZAO denotes Dickey–Fuller, Zivot–Andrews and Ohara, and AICBMS
and BICBMS denote AIC- and BIC-based model selections, respectively.
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